Fatty acid structural requirements for activity of arachidonoyl-CoA synthetase.

نویسندگان

  • E J Neufeld
  • H Sprecher
  • R W Evans
  • P W Majerus
چکیده

We have examined the fatty acid substrate specificity of arachidonoyl-CoA synthetase from human platelet membranes. A variety of positional isomers and chain-length analogs of arachidonic acid [20:4(5, 8, 11, 14)] were synthesized, and assayed for their ability to inhibit arachidonoyl-CoA formation or to serve as substrates for the synthetase. The chain-length specificity of the synthetase for delta 8,11,14 trienoic fatty acids was C19 greater than C18 = C20 much greater than C21 greater C22. Inhibition activity by positional isomers of arachidonate was 20:4(5, 8, 11, 14) approximately equal to 20:4(6, 9, 12, 15) = 20:4(7, 10, 13, 16) much greater than 20:4(4, 7, 10, 13), however, Vmax for arachidonate was greater than that for 20:4(6, 9, 12, 15). The enzyme apparently "counts" double bonds from the carboxyl terminus. As counted from the methyl terminus we found that several n-6,-9,-12 fatty acids were ineffective as inhibitors [18:3(6, 9, 12); 19:4)4, 7, 10, 13); 21:3(9, 12, 15)], whereas all methylene-interrupted tri- and tetraenoic fatty acids which contained delta 8 and delta 11 double bonds were potent inhibitors. The delta 11 double bond was best associated with optimal inhibition: 20:3(5, 11, 14) had a lower Ki than 20:3(5, 8, 14). 13-Methyl-20:3(8, 11, 14) did not inhibit the enzyme. Partially purified enzyme from calf brain, depleted of nonspecific long-chain acyl-CoA synthetase, exhibited the same fatty acid specificity as crude platelet enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?

Apparent Km values have been determined for the substrates ATP, CoA and fatty acids for the long-chain acyl-CoA synthetase (EC 6.2.1.3) reaction in lysates of human blood platelets. The apparent Km for ATP was higher for saturated fatty acids (C12:0 to C18:0) than for unsaturated acids (C18:1 to C22:6). Other apparent Km values were very similar for all long-chain fatty acids tested. Palmitic a...

متن کامل

Arachidonoyl-CoA synthetase. Separation from nonspecific acyl-CoA synthetase and distribution in various cells and tissues.

Arachidonoyl-CoA synthetase was solubilized from a particulate fraction of calf brain and human platelets using 1% Nonidet P-40 and 10 mM EDTA. Arachidonoyl-CoA synthetase from both preparations was separated from nonspecific (long chain) acyl-CoA synthetase (EC 6.2.1.3) by chromatography on hydroxylapatite. To further substantiate that the two acyl-CoA synthetases are distinct proteins, we sol...

متن کامل

The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart

Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...

متن کامل

Acyl-CoA binding and acylation of UDP-glucuronosyltransferase isoforms of rat liver: their effect on enzyme activity.

When [14C]arachidonoyl-CoA was incubated with crude extracts of rat liver microsomes, [14C]arachidonic acid was incorporated into many proteins, suggesting that modification of these proteins with fatty acid, i.e. acylation, occurred. Using a [14C]arachidonyl-CoA labelling assay, 50 and 53 kDa proteins were purified from rat liver microsomes to near homogeneity by sequential chromatography on R...

متن کامل

CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase.

Mutations in human CGI-58/ABHD5 cause Chanarin-Dorfman syndrome (CDS), characterized by excessive storage of triacylglycerol in tissues. CGI-58 is an alpha/beta-hydrolase fold enzyme expressed in all vertebrates. The carboxyl terminus includes a highly conserved consensus sequence (HXXXXD) for acyltransferase activity. Mouse CGI-58 was expressed in Escherichia coli as a fusion protein with two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 1984